
Strawberry Goblet Throne

CS 4670/5670
Sean Bell

Lecture 39: Training Neural
Networks (Cont’d)

(Side Note for PA5) AlexNet:  
1 vs 2 parts

Caffe represents caffe like the above image, but computes
as if it were the bottom image using 2 “groups”

x h LFunction Function s...

(1) Forward Propagation:

L∂L
∂s

...

(2) Backward Propagation:

∂L
∂h

FunctionFunction
∂L
∂x

(Recall) Each iteration of training

(3) Weight update: θ ←θ − λ ∂L
∂θ

(Recall) Babysitting the training process

Slide from Karpathy 2016

Typical loss

(Recall) Babysitting the training process

Figure: Andrej Karpathy

Weight Initialization

[He et al, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification”, arXiv 2015]

For deep nets, initialization is subtle and important:

Initialize weights to be smaller if there are more input connections:

For neural nets with ReLU, this will ensure all activations have the
same variance

Initialization matters

[He et al, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification”, arXiv 2015]

22 layer model 30 layer model

Training can take much longer if not carefully initialized:

Proper initialization is an
active area of research

Slide: Andrej Karpathy

(Recall) Regularization 
reduces overfitting

L = Ldata + Lreg Lreg = λ 1
2
W 2

2

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Example Regularizers

Lreg = λ W 1 = λ Wij
ij
∑L1 regularization

(L1 regularization encourages sparse weights:
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg = λ1 W 1 + λ2 W 2
2

(combine L1 and L2 regularization)

Lreg = λ 1
2
W 2

2
L2 regularization

(L2 regularization encourages small weights)

Max norm
Clamp weights to some max norm W 2

2 ≤ c

“Weight decay”

Lreg = λ 1
2
W 2

2

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Regularization is also called “weight decay” because
the weights “decay” each iteration:

∂L
∂W

= λW

W ←W −αλW − ∂Ldata
∂W

Gradient descent step:

αλWeight decay: (weights always decay by this amount)

Note: biases are sometimes excluded from regularization

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Dropout

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]

Simple but powerful technique to reduce overfitting:

Dropout

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]

Simple but powerful technique to reduce overfitting:

Dropout

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]

Simple but powerful technique to reduce overfitting:

Note: Dropout can be interpreted as an approximation to taking the
geometric mean of an ensemble of exponentially many models

Dropout

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]

How much dropout? Around p = 0.5

Dropout

[Krizhevsky et al, “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012]

Case study: [Krizhevsky 2012]
Dropout here

But not here — why?

“Without dropout, our network exhibits
substantial overfitting.”

Dropout

(note, here X is a single input)

Figure: Andrej Karpathy

Dropout

Figure: Andrej Karpathy

Test time: scale the activations

We want to keep the same expected value

Expected value of a neuron h with dropout:
E[h]= ph + (1− p)0 = ph

Slide: Andrej Karpathy

Slide: Andrej Karpathy

Slide: Andrej Karpathy

Place after a FC or
Convolutional layer, and

before nonlinearity

Slide: Andrej Karpathy

Transfer Learning (“fine-tuning”)

Slide: Andrej Karpathy

Slide: Andrej Karpathy

This is not just a special trick;  
this is “the” method used by most papers

Transfer Learning (“fine-tuning”)

Transfer Learning (“fine-tuning”)

Slide: Andrej Karpathy

Summary
• Preprocess the data (subtract mean, sub-crops)

• Initialize weights carefully

• Use Dropout and/or Batch Normalization

• Use SGD + Momentum

• Fine-tune from ImageNet

• Babysit the network as it trains

Slide: Andrej Karpathy

Slide: Andrej Karpathy

Slide: Andrej Karpathy

