|_ecture 39: Training Neural
Networks (Cont’'d)

CS 4670/5670
Sean Bell

Strawberry Goblet Throne

(Side Note for PA5) AlexNet:
1 vs 2 parts

| 3

cense
3
y - b
N
ma 384 24 256 1000
Max L [l
ing 4096 4096
Max peo
pooiing pooing

e \-"i‘ - 192 128 2m aaaaaaa
27 128 o -
Z A N 13
- y T hs [dense]| |dense
u — 3] X
B 192128 Max ||
2048 2048
Max 12 Max
ooling pooling

Caffe represents catfte like the above image, but computes
as it it were the bottom image using 2 “groups”

(Recall) Each iteration of training

(1) Forward Propagation:

X — | Function —~h| Function

(2) Backward Propagation:

JdL JL.
Function |+ «— -« «— | Fynction

dx oh

(3) Weight update: 0 « @ — /lg_g

-85 - I
oL

ey)
ds

(Recall) Babysitting the training process

Typical loss

loss

low learning rate

high learning rate

good learning rate

epoch

Slide from Karpathy 2016

(Recall) Babysitting the training process

Loss
- Bad initialization
a prime suspect

time

Figure: Andrej Karpathy

Weignt Initialization

For deep nets, initialization is subtle and important:

\Q \
Initialize weights to be smaller if there are more input connections:
W = np.random.randn(n) * sgrt(2.0 / n)

For neural nets with RelLU, this will ensure all activations have the
same variance

[He et al, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification”, arXiv 2015]

INnitialization matters

Training can take much longer if not carefully initialized:

Sao 0.95F
0.95¢+
0.9}
0.9+ A .
o LA £ 085
A I Y | S e W
0~85" 1 l .
- 51‘1,Var[ng.] =1 ours 08 ~— En,l’(u'lw,l =1 Ours
08} i
--- fiVar|w;] =1 Xavier 0.75 -- W Var|lw| =1 Xavier
0755 0.5 1 15 2 1 ' :
' ' 23 ? 0 1 2 3 4 5 6 7 8 9
Epoch
Epoch

[He et al, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification”, arXiv 2015]

Proper Initialization Is an
active area of research

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Slide: Andrej Karpathy

(Recall) Regularization
reduces overfitting

1
L= Ldata T Ll’eg Lreg — /15‘ ‘W‘ E

A =0.001 A=0.1

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Example Regularizers

L2 regularization L., = /1%‘ W E

(L2 regularization encourages small weights)

L1 regularization Lreg = /IHW‘L =)“2|WU
i

(L1 regularization encourages sparse weights:
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg — /11 ‘ ‘W‘ ‘1 T 12 ‘ ‘W‘ E

(combine L1 and L2 regularization)

Max norm
Clamp weights to some max norm

Wl <c

“Weight decay”

Regularization is also called “weight decay” because
the weights “decay” each iteration:

| I oL

L. =A—|W » =AW
reg 2H HZ aW
Gradient descent step: N7

W« W —oAW e
oW

Weight decay: a4 Tweights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Dropout

Simple but powerful technique to reduce overfitting:

PW
Present with Always
probability p present

(a) At training time (b) At test time

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JIMLR 2014]

Dropout

Simple but powerful technique to reduce overfitting:

2.5»}-

2.0

) .
{ .’ \ N
A
= Q
(/ ! .
)) f
f | ') X
/ A \ / ! v . E f \ ‘k.‘ ; A ‘\.‘
TR \/ M v \ [\ \J W, SN / v |
' v) y

‘0‘,, .‘ ‘With dropout

Without dropout

Classification Error %

A2 / “ D\
"\le‘s.&&’%\\%‘Ox'/.‘v‘o' A\ ZAAA \; A o)
[NIRRT &’ﬁ"‘%&,""" AK
1.0 : : , d
0 200000 400000 600000 800000 1000000

Number of weight updates

|Srivasta et al, "Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JIMLR 2014]

Dropout

Simple but powerful technique to reduce overfitting:

®

2N\
%

»

N

¢

W

X
N\

; l}é‘
5 'o
'/?/

\

)
)
[/

vll
@
N

A

4

\\‘\v
4
4y
AR
)

).‘

.

Q

(a) Standard Neural Net (b) After applying dropout.

Note: Dropout can be interpreted as an approximation to taking the
geometric mean of an ensemble of exponentially many models

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JIMLR 2014]

s oo
=))

= 0o
o o

Classification Error %

&
o

&
=)

Dropout

How much dropout? Around p = 0.5

g
o

—_—
=

— Test Error
+—+ Training Error

- . . .

0 0.2 0.4 0.6 0.8 1.0

Probability of retaining a unit (p)

(a) Keeping n fixed.

Classification Error %

3.0

- - - N
=) e =) n

&
n

S
=

— Test Error

R Training Error | |

. . .

0.2 0.4 0.6 0.8
Probability of retaining a unit (p)

(b) Keeping pn fixed.

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from

Overfitting”, JIMLR 2014]

Dropout

Case study: [Krizhevsky 2012]

“Without dropout, our network exhibits Dropout here
substantial overfitting.” l l
. 4 AN R = 3
\ - . 57 193 38 2048 Joag \dense
) ,; 128 P
. N AN \13 13
ﬂi:;i;f" [—S o l27 33 - HB 33] J 135 1 ..13 dense’| [dense| [|
N J 3 [\J 1000
\ 192 192 128 Max
\UlStride Max 128 Max pooling 2048 2048
Uof 4 pooling pooling T
3 28

But not here — why?

[Krizhevsky et al, “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012]

Dropout

I e 1 < 4 4 | > 2% —— b J]
— ¥ 4 '] i 2 4 |] ' 1 J) '8 |) J 4 I ;
p - 0.5 1) \ A’a)[’. b & ¥ Vi ANCCULITIY a UIlL | B I I LUK LK) O U i)

def train_step(X):
"um X contains the data

L N rwa '8 | " ~L ge mn | - »-) r " I ra " " L }
F 1T0rward pass O exallp L¢) el a | 1eT W K

H1 = np.maximum(®, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # first dropout
H]. ¥ Ul ¥ droj

H2 = np.maximum(©, np.dot(W2, Hl) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout
H2 *= U2 # drop

out = np.dot(W3, H2) + b3

(note, here X is a single input)

Example forward
pass with a 3-
layer network
using dropout

Figure: Andrej Karpathy

Dropout

Test time: scale the activations

Expected value of a neuron h with dropout:

Elh]l=ph+({—-p)0 = ph

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p
out = np.dot(W3, H2) + b3

We want to keep the same expected value

Figure: Andrej Karpathy

Batch Normalization [loffe and Szegedy, 2018]

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

(k) _ E[pk)

\/ Var[z(%)] this is a vanilla

differentiable function...

And then allow the network to squash
the range if it wants to:

y k) = A (K)Z(R) 4 g(K)

Slide: Andrej Karpathy

Batch Normalization

Input: Values of x over a mini-batch: B = {zy_,, }:
Parameters to be learned: v, /3
Olltpllt: {yi - BN%ﬂ(.’IZi)}

m

1 2k
1B = Z T // mini-batch mean
=1
1 m
og — — Z(a:,- — ug)® // mini-batch variance
m 4
=1
o i — '
T; — — LB // normalize
Vo5 +e€

yi < 7Z; + B = BN, g(z;) // scale and shift

[loffe and Szegedy, 2015]

Improves gradient flow through
the network

Allows higher learning rates
Reduces the strong dependence
on initialization

Acts as a form of regularization
In a funny way, and slightly
reduces the need for dropout,
maybe

Slide: Andrej Karpathy

Batch Normalization

Input: Values of x over a mini-batch: B = {z; . };
Parameters to be learned: v, 3

Output: {y-i. = BN*y.B(:L'i)}

m

1

UB — —) T // mini-batch mean
m &
m
o8 — = . — L // mini-batch variance
B £ Z ps)>
- Ti — W :
By 4— — / = // normalize
\/0123 + €
Yi; — YZ; + B = BN, g(x;) // scale and shift

[loffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

Slide: Andrej Karpathy

Batch Normalization [loffe and Szegedy, 2015]

|

FC
'
BN

Place aftera FC or
tanh ,
| Convolutional layer, and
before nonlinearity

FC

BN

tanh

Slide: Andrej Karpathy

Transfer Learning (“fine-tuning”)

1. Train on ImageNet 2. Finetune network on
_ your own data
v‘///‘
X | |
/
/ A\ l‘\l
ImageNet data ‘ & Your™ 3
~ C_data, -
L —
\\".

Slide: Andrej Karpathy

Transfer Learning (“fine-tuning”)

S 1. Train on —— 2. If small dataset: fix ~mae_ 3 |f you have medium sized
o, ImageNet omes all weights (treat CNN eel . dataset, “finetune” instead:
conv .
maxpool mapool S fixed feature = Use the old weights as
conv-128 conv-128 extractor}. retrain only —— initialization, train the full
:.:;, onvi2zs . the classifier conv-128 network or only some of the
= 'm . maxpool higher layers
conv: o I.e. swap the Softmax conv-256
conv-256 conv-256 256 . . :
maxpool mapool | lAyEr at the end cenv#®8. retrain bigger portion of the
conv-512 conv-512 network, or even all of it.
conv-512 conv-512 com312
conv-512
maxpool ' maxpool
conv-512 conv-512
p—rr e conv-512 /
conv-512
maxpool ' maxpool
FC-4096 FC-4096
FC-4096 FC-4096 lal
——— e FC-4096
e FC-1000
softmax

This is not just a special trick;
this Is "the” method used by most papers

Slide: Andrej Karpathy

Transfer Learning (“fine-tuning”)

E.g. Caffe Model Zoo: Lots of pretrained ConvNets

https://github.com/BVLC/caffe/wiki/Model-Zoo

Berbeley 41amed modeis

Pracan £ W madet S W1

Ogl 88001 P, gt g b gl & e Py e o

Py (et Mbemaron ogrne ot Wetety P

CAN Mocein for Salent Obyect Subiniang

Fasebs aty Rasted Tage Detesbnr

Slide: Andrej Karpathy

summary

Preprocess the data (subtract mean, sub-crops)
Initialize weights carefully

Use Dropout and/or Batch Normalization

Use SGD + Momentum

Fine-tune from ImageNet

Babysit the network as it trains

You are now ready.

Slide: Andrej Karpathy

You are now ready.

Slide: Andrej Karpathy

You are now ready.

Slide: Andrej Karpathy

