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(Side Note for PA5) AlexNet:  
1 vs 2 parts

Caffe represents caffe like the above image, but computes 
as if it were the bottom image using 2 “groups”
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∂L
∂h

FunctionFunction
∂L
∂x

(Recall) Each iteration of training

(3) Weight update: θ ←θ − λ ∂L
∂θ



(Recall) Babysitting the training process

Slide from Karpathy 2016

Typical loss



(Recall) Babysitting the training process

Figure: Andrej Karpathy



Weight Initialization

[He et al, “Delving Deep into Rectifiers: 
Surpassing Human-Level Performance on ImageNet Classification”, arXiv 2015]

For deep nets, initialization is subtle and important:

Initialize weights to be smaller if there are more input connections:

For neural nets with ReLU, this will ensure all activations have the 
same variance



Initialization matters

[He et al, “Delving Deep into Rectifiers: 
Surpassing Human-Level Performance on ImageNet Classification”, arXiv 2015]

22 layer model 30 layer model

Training can take much longer if not carefully initialized:



Proper initialization is an 
active area of research

Slide: Andrej Karpathy



(Recall) Regularization 
reduces overfitting

L = Ldata + Lreg Lreg = λ 1
2
W 2

2

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]



Example Regularizers

Lreg = λ W 1 = λ Wij
ij
∑L1 regularization

(L1 regularization encourages sparse weights: 
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg = λ1 W 1 + λ2 W 2
2

(combine L1 and L2 regularization)

Lreg = λ 1
2
W 2

2
L2 regularization

(L2 regularization encourages small weights)

Max norm
Clamp weights to some max norm W 2

2 ≤ c



“Weight decay”

Lreg = λ 1
2
W 2

2

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Regularization is also called “weight decay” because
the weights “decay” each iteration:

∂L
∂W

= λW

W ←W −αλW − ∂Ldata
∂W

Gradient descent step:

αλWeight decay: (weights always decay by this amount)

Note: biases are sometimes excluded from regularization

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Dropout

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting”, JMLR 2014]

Simple but powerful technique to reduce overfitting:
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Dropout

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting”, JMLR 2014]

Simple but powerful technique to reduce overfitting:

Note: Dropout can be interpreted as an approximation to taking the 
geometric mean of an ensemble of exponentially many models



Dropout

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting”, JMLR 2014]

How much dropout? Around p = 0.5



Dropout

[Krizhevsky et al, “ImageNet Classification with Deep Convolutional 
Neural Networks”, NIPS 2012]

Case study: [Krizhevsky 2012]
Dropout here

But not here — why?

“Without dropout, our network exhibits 
substantial overfitting.”



Dropout

(note, here X is a single input)

Figure: Andrej Karpathy



Dropout

Figure: Andrej Karpathy

Test time:  scale the activations

We want to keep the same expected value

Expected value of a neuron h with dropout:
E[h]= ph + (1− p)0 = ph



Slide: Andrej Karpathy



Slide: Andrej Karpathy



Slide: Andrej Karpathy



Place after a FC or 
Convolutional layer, and 

before nonlinearity

Slide: Andrej Karpathy



Transfer Learning (“fine-tuning”)

Slide: Andrej Karpathy



Slide: Andrej Karpathy

This is not just a special trick;  
this is “the” method used by most papers

Transfer Learning (“fine-tuning”)



Transfer Learning (“fine-tuning”)

Slide: Andrej Karpathy



Summary
• Preprocess the data (subtract mean, sub-crops) 

• Initialize weights carefully 

• Use Dropout and/or Batch Normalization 

• Use SGD + Momentum 

• Fine-tune from ImageNet 

• Babysit the network as it trains



Slide: Andrej Karpathy
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